Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(28): 10173-10184, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37394749

RESUMO

The challenge of chemical exposomics in human plasma is the 1000-fold concentration gap between endogenous substances and environmental pollutants. Phospholipids are the major endogenous small molecules in plasma, thus we validated a chemical exposomics protocol with an optimized phospholipid-removal step prior to targeted and non-targeted liquid chromatography high-resolution mass spectrometry. Increased injection volume with negligible matrix effect permitted sensitive multiclass targeted analysis of 77 priority analytes; median MLOQ = 0.05 ng/mL for 200 µL plasma. In non-targeted acquisition, mean total signal intensities of non-phospholipids were enhanced 6-fold in positive (max 28-fold) and 4-fold in negative mode (max 58-fold) compared to a control method without phospholipid removal. Moreover, 109 and 28% more non-phospholipid molecular features were detected by exposomics in positive and negative mode, respectively, allowing new substances to be annotated that were non-detectable without phospholipid removal. In individual adult plasma (100 µL, n = 34), 28 analytes were detected and quantified among 10 chemical classes, and quantitation of per- and polyfluoroalkyl substances (PFAS) was externally validated by independent targeted analysis. Retrospective discovery and semi-quantification of PFAS-precursors was demonstrated, and widespread fenuron exposure is reported in plasma for the first time. The new exposomics method is complementary to metabolomics protocols, relies on open science resources, and can be scaled to support large studies of the exposome.


Assuntos
Fluorocarbonos , Fosfolipídeos , Adulto , Humanos , Fosfolipídeos/química , Espectrometria de Massas em Tandem/métodos , Estudos Retrospectivos , Cromatografia Líquida/métodos , Fluorocarbonos/análise
2.
Environ Sci Technol ; 57(17): 6808-6824, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37083417

RESUMO

Nontarget mass spectrometry has great potential to reveal patterns of water contamination globally through community science, but few studies are conducted in low-income countries, nor with open-source workflows, and few datasets are FAIR (Findable, Accessible, Interoperable, Reusable). Water was collected from urban and rural rivers around Dhaka, Bangladesh, and analyzed by liquid chromatography high-resolution mass spectrometry in four ionization modes (electrospray ionization ±, atmospheric pressure chemical ionization ±) with data-independent MS2 acquisition. The acquisition strategy was complementary: 19,427 and 7365 features were unique to ESI and APCI, respectively. The complexity of water pollution was revealed by >26,000 unique molecular features resolved by MS-DIAL, among which >20,000 correlated with urban sources in Dhaka. A major wastewater treatment plant was not a dominant pollution source, consistent with major contributions from uncontrolled urban drainage, a result that encourages development of further wastewater infrastructures. Matching of deconvoluted MS2 spectra to public libraries resulted in 62 confident annotations (i.e., Level 1-2a) and allowed semiquantification of 42 analytes including pharmaceuticals, pesticides, and personal care products. In silico structure prediction for the top 100 unknown molecular features associated with an urban source allowed 15 additional chemicals of anthropogenic origin to be annotated (i.e., Level 3). The authentic MS2 spectra were uploaded to MassBank Europe, mass spectral data were openly shared on the MassIVE repository, a tool (i.e., MASST) that could be used for community science environmental surveillance was demonstrated, and current limitations were discussed.


Assuntos
Poluentes Químicos da Água , Poluição da Água , Bangladesh , Fluxo de Trabalho , Cromatografia Líquida/métodos , Água , Espectrometria de Massas por Ionização por Electrospray/métodos , Poluentes Químicos da Água/análise
3.
J Hazard Mater ; 409: 124652, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33277075

RESUMO

A Quantitative Structure-Retention Relationship (QSRR) model is proposed and aims at increasing the confidence level associated to the identification of organic contaminants by Ultra-High Performance Liquid Chromatography hyphenated to High Resolution Mass Spectrometry (UHPLC-HRMS) in environmental samples under a suspect screening approach. The model was built from a selection of 8 easily accessible physicochemical descriptors, and was validated from a set of 274 organic compounds commonly found in environmental samples. The proposed predictive figure approach is based on the mobile phase composition at solute elution (expressed as % acetonitrile), that has the major advantage of making the model reusable by other laboratories, since the elution composition is independent of both the column geometry and the UHPLC-system. The model quality was assessed and was altered neither by the columns from different lots, nor by the complex matrices of environmental water samples. Then, the solute retention of any organic compound present in water samples is expected to be predicted within ± 14.3% acetonitrile by our model. Solute retention can therefore be used as a supplementary tool for the identification of environmental contaminants by UHPLC-HRMS, in addition to mass spectrometry data already used in the suspect screening approach.

4.
Sci Total Environ ; 712: 136551, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31945539

RESUMO

Conventional wastewater treatment plants (WWTPs) discharge a highly diverse range of organic contaminants in aquatic environments, including marine waters. The health of marine ecosystems could be threatened by contaminants release. Environmental metabolomics can be helpful to assess the effects of multi-contamination on marine organisms without any a priori information since it is able to provide meaningful information on the biochemical response of organisms to a stress. The aim of the present study was to evaluate the potential of metabolomics to highlight key metabolites disrupted by a WWTP effluent extract exposure and then elucidate the biological effects of such exposure on Mediterranean mussels (Mytilus galloprovincialis). Exposed male mussels showed numerous metabolites altered in response to WWTP effluent exposure. The highlighted metabolites belong mainly to amino acids metabolism (e.g. tyrosine, phenylalanine, leucine, proline, etc.), neurohormones (dopamine and a serotonin metabolite), purine and pyrimidine metabolism (e.g. adenosine, adenine, guanine, uracil etc.), citric acid cycle intermediates (e.g. malate, fumarate), and a component involved in oxidative stress defense (oxidized glutathione). Modulation of these metabolites could reflect the alteration of several biological processes such as energy metabolism, DNA and RNA synthesis, immune system, osmoregulation, byssus formation and reproduction, which may lead to a negative impact of organism fitness. Our study provided further insight into the effects of WWTP effluents on marine organisms.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Ecossistema , Masculino , Redes e Vias Metabólicas , Metabolômica , Extratos Vegetais
5.
Mar Pollut Bull ; 131(Pt A): 496-506, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29886975

RESUMO

Interest in the presence and effects of diclofenac (DCF) and other pharmaceutical products (PPs) in the aquatic environment has been growing over the last 20 years. DCF has been included in the First Watch List of the EU Water Framework Directive in order to gather monitoring data in surface waters. Despite PP input in water bodies, few studies have been conducted to determine the extent of DCF occurrence and effects on marine ecosystems, which is usually the final recipient of surface waters. The present article reviews available published data on DCF occurrence in marine water, sediment and organisms, and its effects on marine organisms. The findings highlight the scarcity of available data on the occurrence and effects of DCF in marine ecosystems, and the need for further data acquisition to assess the risks associated with the presence of this compound in the environment.


Assuntos
Diclofenaco/análise , Poluentes Químicos da Água/análise , Organismos Aquáticos/efeitos dos fármacos , Diclofenaco/toxicidade , Ecossistema , Sedimentos Geológicos/análise , Poluentes Químicos da Água/toxicidade
6.
Sci Total Environ ; 613-614: 611-618, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28930695

RESUMO

The presence of pharmaceutically active compounds in aquatic environments has become a major concern over the past 20years. Elucidation of their mode of action and effects in non-target organisms is thus now a major ecotoxicological challenge. Diclofenac (DCF) is among the pharmaceutical compounds of interest based on its inclusion in the European Union Water Framework Directive Watch List. In this study, our goal was to investigate the potential of a metabolomic approach to acquire information without any a priori hypothesis about diclofenac effects on marine mussels. For this purpose, mussel's profiles were generated by liquid chromatography combined with high resolution mass spectrometry. Two main metabolic pathways were found to be impacted by diclofenac exposure. The tyrosine metabolism was mostly down-modulated and the tryptophan metabolism was mostly up-modulated following exposure. To our knowledge, such DCF effects on mussels have never been described despite being of concern for these organisms: catecholamines and serotonin may be involved in osmoregulation, and in gamete release in mollusks. Our results suggest potential impairment of mussel osmoregulation and reproduction following a DCF exposure.


Assuntos
Diclofenaco/efeitos adversos , Metabolômica , Mytilus/efeitos dos fármacos , Poluentes Químicos da Água/efeitos adversos , Animais , Mar Mediterrâneo , Mytilus/fisiologia , Osmorregulação/efeitos dos fármacos , Reprodução/efeitos dos fármacos
7.
Environ Sci Pollut Res Int ; 25(7): 6087-6094, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28528506

RESUMO

Human pharmaceuticals, such as nonsteroidal anti-inflammatory drugs (NSAIDs), are an emerging threat to marine organisms. NSAIDs act through inhibition of cyclooxygenase (COX) conversion of arachidonic acid into prostaglandins. One experiment was carried out whereby marine mussels were exposed for 72 h to 1 and 100 µg/L diclofenac (DCF). A specific and sensitive method using liquid chromatography high-resolution tandem mass spectrometry was developed to quantify DCF in mussel tissues. The developed method could also clearly identify and quantify COX products, i.e., prostaglandin levels, and be used to assess their modulation following DCF exposure. Prostaglandin-D2 (PGD2) was always found below the detection limit (20 µg/kg dry weight (dw)). Basal prostaglandin-E2 (PGE2) concentrations ranged from below the detection limit to 202 µg/kg dw. Exposure of 100 µg/L resulted in a significant reduction in PGE2 levels, whereas a downward trend was observed at 1 µg/L exposure. No difference was observed for prostaglandin-F2α (PGF2α) levels between controls and exposed organisms.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Diclofenaco/toxicidade , Prostaglandinas/biossíntese , Animais , Organismos Aquáticos/metabolismo , Bivalves/metabolismo , Cromatografia Líquida , Humanos , Prostaglandina-Endoperóxido Sintases/metabolismo
8.
Sci Total Environ ; 583: 257-268, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28108094

RESUMO

Despite the growing concern on the presence of pharmaceutically active compounds in the environment, few studies have been conducted on their metabolism in marine organisms. In this study, a non-targeted strategy based on the generation of chemical profiles generated by liquid chromatography combined with high resolution mass spectrometry was used to highlight metabolite production by the Mediterranean mussel (Mytilus galloprovincialis) after diclofenac exposure. This method allowed revealing the production of 13 metabolites in mussel tissues. Three of them were phase I metabolites, including 4'-hydroxy-diclofenac and 5-hydroxy-diclofenac. The remaining 10 were phase II metabolites, including sulfate and amino acids conjugates. Among all of the metabolites highlighted, 5 were reported for the first time in an aquatic organism exposed to diclofenac.


Assuntos
Diclofenaco/toxicidade , Mytilus/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Diclofenaco/metabolismo , Metaboloma/efeitos dos fármacos , Metaboloma/fisiologia , Metabolômica , Mytilus/metabolismo , Poluentes Químicos da Água/metabolismo
9.
Environ Sci Pollut Res Int ; 23(1): 23-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26381791

RESUMO

Barrage fishponds may represent a significant surface water area in some French regions. Knowledge on their effect on water resources is therefore necessary for the development of appropriate water quality management plans at the regional scale. Although there is much information on the nutrient removal capacity of these water bodies, little attention has been paid to other agricultural contaminants such as pesticides. The present paper reports the results of a 1-year field monitoring of pesticide concentrations and water flows measured upstream and downstream from a fishpond in North East France to evaluate its capacity in reducing pesticide loads. Among the 42 active substances that had been applied on the fishpond's catchment, seven pesticides (five herbicides, two fungicides) were studied. The highest concentration in the inflow to the pond was 26.5 µg/L (MCPA), while the highest concentration in pond outflow was 0.54 µg/L (prosulfocarb). Removal rates of dissolved pesticides in the fishpond ranged from 0-8% (prosulfocarb) to 100% (clopyralid). Although not primarily designed for the treatment of diffuse sources of pesticides, the studied fishpond had the potential to do so.


Assuntos
Recuperação e Remediação Ambiental , Praguicidas , Lagoas , Poluentes Químicos da Água , Agricultura , Animais , Monitoramento Ambiental , Poluição Ambiental , Recuperação e Remediação Ambiental/métodos , Peixes , França , Fungicidas Industriais , Herbicidas , Praguicidas/análise , Movimentos da Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...